Exchange rates determination based on genetic algorithms using Mendel's principles: Investigation and estimation under uncertainty
نویسندگان
چکیده
A genetic algorithm using Mendel’s principle (Mendel-GA), in which the random assignment of alleles from parents to offsprings is implied by the Mendel genetic operator, is proposed for the exchange rates determination problem. Besides the traditional genetic operators of selection, crossover, and mutation, Mendel’s principles are included, in the form of an operator in the genetic algorithm’s evolution process. In the quantitative analysis of exchange rates determination, the Mendel-GA examines the exchange rate fluctuations at the short-run horizon. Specifically, the aim is to revisit the determination of high-frequency exchange rates and examine the differences between the method of genetic algorithms and that of the traditional estimation methods. A simulation with a given initial conditions has been devised in MATLAB, and it is shown that the Mendel-GA can work valuably as a tool for the exchange rates estimation modelling with high-frequency data. 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry
Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The m...
متن کاملDistribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry
Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location– allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. ...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملEstimation of Moisture in Transformer Insulation Using Dielectric Frequency Response Analysis by Heuristic Algorithms
Transformers are one of the most valuable assets of power systems. Maintenance and condition assessment of transformers has become one of the concerns of researchers due to huge number of transformers has been approached to the end of their lifetimes. Transformer’s lifetime depends on the life of its insulation and the insulation’s life is strongly influenced by its moisture attraction as well....
متن کاملModeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information Fusion
دوره 14 شماره
صفحات -
تاریخ انتشار 2013